基于reactor设计websocket服务器_reactor webflux

基于reactor设计websocket服务器_reactor webflux

编码文章call10242025-03-02 18:26:1329A+A-

1.什么是WebSocket?

WebSocket是HTML5下一种新的协议(websocket协议本质上是一个基于tcp的协议)

websocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。在WebSocket API中,浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。

2.总体过程:

2.1 握手过程:

首先,客户端发起http请求,经过3次握手后,建立起TCP连接;http请求里存放WebSocket支持的版本号等信息,如:Upgrade、Connection、WebSocket-Version等;

然后,服务器收到客户端的握手请求后,同样采用HTTP协议回馈数据;最后,客户端收到连接成功的消息后,开始借助于TCP传输信道进行全双工通信。

第一个一条信息来自|Sec-WebSocket-Key|报头字段在客户端握手中:Sec-WebSocket-Key: fmXyv9eR4PG9L53s09jQLA==对于这个报头字段,服务器必须接受该值(作为当前值)在报头字段中,例如,base64编码的[RFC4648]版本减任何前导和尾随空格),并将其与全局唯一标识符(GUID, [RFC4122])“258 eafa5-e914-47da -95CA-C5AB0DC85B11”的字符串形式,不太可能被使用网络端点不理解WebSocket协议。一个SHA-1哈希(160位)[FIPS;180-3],base64编码,然后返回到服务器的握手。

###websocket  浏览器-->服务器
GET / HTTP/1.1
Host: 192.168.240.128:8888
Connection: Upgrade ##升级版
Pragma: no-cache
Cache-Control: no-cache
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36 Core/1.94.172.400 QQBrowser/11.1.5140.400
Upgrade: websocket #websockrt
Origin: null
Sec-WebSocket-Version: 13
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN,zh;q=0.9
Sec-WebSocket-Key: fmXyv9eR4PG9L53s09jQLA==
Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits
 
 
###握手信息拼接Key+GUID
Key =  fmXyv9eR4PG9L53s09jQLA==
GUID = 258EAFA5-E914-47DA-95CA-C5AB0DC85B11
str = Key+GUID = fmXyv9eR4PG9L53s09jQLA==258EAFA5-E914-47DA-95CA-C5AB0DC85B11
 
###哈希SHA-1
sha = SHA-1(str)
###base64转换
vaule = base64-encoded(sha);
 
###服务器-->浏览器
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: vaule

具体代码实现

//响应包拼接
int ws_handshark(struct ntyevent *ev) 
{
	int idx = 0;
	char sec_data[128] = {0};
	char sec_accept[128] = {0};
 
	do{
		char linebuff[1024] = {0};	
		idx = readline(ev->buffer, idx, linebuff);
 
		if(strstr(linebuff, "Sec-WebSocket-Key") > 0){
			//Sec-WebSocket-Key: hGI6OP19pWseAnpMcEnb2g==
			//Key+GUID
			//Sec-WebSocket-Key: hGI6OP19pWseAnpMcEnb2g==258EAFA5-E914-47DA-95CA-C5AB0DC85B11
			strcat(linebuff, GUID);
 
			//哈希SHA-1			
			SHA1(linebuff + strlen("Sec-WebSocket-Key: "), strlen(linebuff + strlen("Sec-WebSocket-Key: ")), sec_data);
 
			//base64 编码
			base64_encode(sec_data, strlen(sec_data), sec_accept);	
 
			//printf("idx: %d, line: %ld\n",idx, sizeof("Sec-WebSocket-Key: "));
			//printf("idx: %d, line: %ld\n",idx, strlen("Sec-WebSocket-Key: "));
 
			printf("idx %d ; line:%s\n", idx, sec_accept);
			memcpy(ev->sec_accept, sec_accept, ACCEPT_KEY_LENGTH);
			
		}
		//printf("line %d ; line:%s\n", idx, linebuff);
	}while((ev->buffer[idx] != '\r' || ev->buffer[idx + 1] != '\n') && idx != -1); //两组\r\n结束
	return 0;
}
 
//应答 #服务器-->浏览器
int ws_response(struct ntyevent* ev)
{
	ev->wlength = sprintf(ev->wbuffer, "HTTP/1.1 101 Switching Protocols\r\n"
						"Upgrade: websocket\r\n"
						"Connection: Upgrade\r\n"
						"Sec-WebSocket-Accept: %s\r\n\r\n", ev->sec_accept);
 
	printf("response: %s\n", ev->wbuffer);
	return ev->wlength;
}

相关视频推荐

深入理解websocket,为你的项目多条思路

linux多线程之epoll原理剖析与reactor原理及应用

学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂

需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享


2.2 接收和发送

websocket协议的数据帧

FIN :1bit

指示这是消息中的最后一个片段。第一个碎片也可能是最后的碎片。

RSV1、RSV2、RSV3:各1bit

必须为0,除非协商一个定义含义的扩展为非零值。如果接收到一个非零值,并且没有

协商好的扩展定义了这种非零的含义值,接收端点必须失败WebSocketConnection.

Opcode: 4 bits

定义“有效负载数据”的解释。如果一个未知的操作码,接收端点必须失败WebSocket Connection_。定义了以下值。

* %x0 表示延续帧

* %x1 表示文本框架

* %x2 表示二进制帧

* %x3-7 为其他非控制帧保留

* %x8 表示连接关闭

* %x9 表示ping

* %xA 表示pong

* %xB-F 为进一步的控制帧保留

Mask: 1 bit

定义是否屏蔽“有效负载数据”。如果设置为1,则a屏蔽键包含在屏蔽键中,用于解除屏蔽。

解除屏蔽

j = i MOD 4

transformed-octet-i = original-octet-i XOR masking-key-octet-j

Payload length: 7 bits, 7+16 bits, or 7+64 bits

“有效载荷数据”的长度,以字节为单位:如果0-125,则为有效载荷长度。如果126,下面的2个字节被解释为a16位无符号整数是有效载荷长度。如果127,后面的8个字节被解释为64位无符号整数最有效位必须为0)为有效载荷长度。多字节长度量用网络字节顺序表示。请注意,在所有情况下,必须使用最小字节数进行编码长度。

将数据帧映射到结构体,小端字节序

struct ws_ophdr {  //小端
 
	unsigned char opcode:4,
				rsv3:1,
				rsv2:1,
				rsv1:1,
				fin:1;
 
	unsigned char pl_len:7,
	 			  mask:1;
 
};

具体代码


//Masking-key, if MASK set to 1 解除数据屏蔽
void umask(char *payload, int length, char *mask_key) {
 
	int i = 0;
 
	for (i = 0;i < length;i ++) {
		payload[i] ^= mask_key[i%4];
	}
 
}
 
int ws_tranmission(struct ntyevent *ev) 
{
	struct ws_ophdr *hdr = (struct ws_ophdr *)ev->buffer;
 
	if (hdr->pl_len < 126) {
 
		unsigned char *payload = NULL;
		if (hdr->mask) {
			payload = ev->buffer + 6;
 
			umask(payload, hdr->pl_len, ev->buffer + 2);
		} else {
			payload = ev->buffer + 2;
		}
 
		printf("payload: %s\n", payload);
 
	} else if (hdr->pl_len == 126) {
 
	} else if (hdr->pl_len == 127)  {
 
	} else {
		//assert(0);
	}
 
	return 0;
}

3. 完整代码


//gcc reactor_server_websocket.c -o server  -lssl -lcrypto
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
 
#include 
#include 
#include 
#include 
 
 
#define GUID  "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"
 
//状态机
enum {
	WS_HANDSHARK = 0,    	//握手状态
	WS_TRANMISSION = 1,		//数据传输
	WS_END = 2,				//终止传输
	WS_COUNT
};
 
 
struct ws_ophdr {  //小端
 
	unsigned char opcode:4,
				rsv3:1,
				rsv2:1,
				rsv1:1,
				fin:1;
 
	unsigned char pl_len:7,
	 			  mask:1;
 
};
 
 
#define  BUFFER_LENGTH  	1024
#define  ACCEPT_KEY_LENGTH		64
 
#define  MAX_EPOLL_EVENTS   1024  //epoll事件数量
#define  SERVER_PORT  		8888
#define  PORT_COUNT			1
 
typedef int NCALLBACK(int ,int ,void*);
 
//管理每一个io fd的结构体
struct ntyevent{
	int fd; //io fd
	int events;
	void *arg;
	int (*callback)(int fd, int events, void* arg); //执行回调函数
 
	int status;	//判断是否已有事件
	char buffer[BUFFER_LENGTH]; //用户缓冲区 //request
	int length; //用户缓冲区长度
 
	char wbuffer[BUFFER_LENGTH]; //response
	int wlength;
	
	char sec_accept[ACCEPT_KEY_LENGTH];
 
	int wsstatus; //0, 1, 2, 3 描述状态机
};
 
//管理ntyevent fd的块
struct eventblock{
	struct eventblock* next; //指向ntyevent fd集合
	struct ntyevent* events; //指向下一个ntyevent fd的块
};
 
//reacotr结点
struct ntyreactor{
	int epfd;	//epoll fd
	int blkcnt;	//ntyevent fd的块 计数
 
	struct eventblock* evblks;	//指向ntyevent fd的块头结点
};
 
int recv_cb(int fd, int events, void *arg);
int send_cb(int fd, int events, void *arg);
int accept_cb(int fd, int events, void* arg);
 
struct ntyevent *ntyreactor_idx(struct ntyreactor *reactor, int sockfd);
 
//io fd结构体设置
void nty_event_set(struct ntyevent* ev, int fd, NCALLBACK callback, void* arg)
{
	ev->fd = fd;
	ev->callback = callback;
	ev->events = 0;
	ev->arg = arg;
 
	return ;
}
 
//io fd add
int nty_event_add(int epfd, int events, struct ntyevent *ev)
{
	struct epoll_event ep_ev = {0, {0}};
	ep_ev.data.ptr = ev;				//io fd结构体
	ep_ev.events = ev->events = events; //需要检测的fd事件
 
	int op; //操作类型
	if(ev->status == 1){
		op = EPOLL_CTL_MOD; //修改
	}else{
		op = EPOLL_CTL_ADD; //添加
		ev->status = 1;		//标志已经添加
	}
		
	if(epoll_ctl(epfd, op, ev->fd, &ep_ev) <0 ){ //绑定
		printf("event add failed [fd=%d], events[%d]\n", ev->fd, events);
		return -1;
	}
 
	return 0;
}
 
//io fd del
int nty_event_del(int epfd, struct ntyevent* ev)
{
	struct epoll_event ep_ev = {0, {0}};
	if(ev->status != 1){ //没有添加过检测的fd事件
		return -1;
	}
 
	ep_ev.data.ptr = ev;
	ev->status = 0; //标志未添加
	epoll_ctl(epfd, EPOLL_CTL_DEL, ev->fd, &ep_ev);
	return 0;
}
 
//读行
int readline(char* allbuf, int idx, char* linebuf)
{
	int len = strlen(allbuf);
 
	for(; idx < len; idx++){
		if(allbuf[idx] == '\r' && allbuf[idx+1] == '\n')
			return idx+2;
		else
			*(linebuf++) = allbuf[idx];
	}
	return -1;
}
 
int base64_encode(char *in_str, int in_len, char *out_str) {    
	BIO *b64, *bio;    
	BUF_MEM *bptr = NULL;    
	size_t size = 0;    
 
	if (in_str == NULL || out_str == NULL)        
		return -1;    
 
	b64 = BIO_new(BIO_f_base64());    
	bio = BIO_new(BIO_s_mem());    
	bio = BIO_push(b64, bio);
	
	BIO_write(bio, in_str, in_len);    
	BIO_flush(bio);    
 
	BIO_get_mem_ptr(bio, &bptr);    
	memcpy(out_str, bptr->data, bptr->length);    
	out_str[bptr->length-1] = '\0';    
	size = bptr->length;    
 
	BIO_free_all(bio);    
	return size;
}
 
//握手流程
int ws_handshark(struct ntyevent *ev) 
{
	int idx = 0;
	char sec_data[128] = {0};
	char sec_accept[128] = {0};
 
	do{
		char linebuff[1024] = {0};	
		idx = readline(ev->buffer, idx, linebuff);
 
		if(strstr(linebuff, "Sec-WebSocket-Key") > 0){
			//Sec-WebSocket-Key: hGI6OP19pWseAnpMcEnb2g==
			//Key+GUID
			//Sec-WebSocket-Key: hGI6OP19pWseAnpMcEnb2g==258EAFA5-E914-47DA-95CA-C5AB0DC85B11
			strcat(linebuff, GUID);
 
			//哈希SHA-1			
			SHA1(linebuff + strlen("Sec-WebSocket-Key: "), strlen(linebuff + strlen("Sec-WebSocket-Key: ")), sec_data);
 
			//base64 编码
			base64_encode(sec_data, strlen(sec_data), sec_accept);	
 
			//printf("idx: %d, line: %ld\n",idx, sizeof("Sec-WebSocket-Key: "));
			//printf("idx: %d, line: %ld\n",idx, strlen("Sec-WebSocket-Key: "));
 
			printf("idx %d ; line:%s\n", idx, sec_accept);
			memcpy(ev->sec_accept, sec_accept, ACCEPT_KEY_LENGTH);
			
		}
		//printf("line %d ; line:%s\n", idx, linebuff);
	}while((ev->buffer[idx] != '\r' || ev->buffer[idx + 1] != '\n') && idx != -1); //两组\r\n结束
	return 0;
}
 
//Masking-key, if MASK set to 1 解除数据屏蔽
void umask(char *payload, int length, char *mask_key) {
 
	int i = 0;
 
	for (i = 0;i < length;i ++) {
		payload[i] ^= mask_key[i%4];
	}
 
}
 
int ws_tranmission(struct ntyevent *ev) 
{
	struct ws_ophdr *hdr = (struct ws_ophdr *)ev->buffer;
 
	if (hdr->pl_len < 126) {
 
		unsigned char *payload = NULL;
		if (hdr->mask) {
			payload = ev->buffer + 6;
 
			umask(payload, hdr->pl_len, ev->buffer + 2);
		} else {
			payload = ev->buffer + 2;
		}
 
		printf("payload: %s\n", payload);
 
	} else if (hdr->pl_len == 126) {
 
	} else if (hdr->pl_len == 127)  {
 
	} else {
		//assert(0);
	}
 
	return 0;
}
 
//请求 协议解析
int ws_request(struct ntyevent * ev)
{
	if (ev->wsstatus == WS_HANDSHARK) {
		ws_handshark(ev);
		ev->wsstatus = WS_TRANMISSION;  //状态改变
	} else if (ev->wsstatus == WS_TRANMISSION) {
		ws_tranmission(ev);
	}
}
 
 
 
//应答 #服务器-->浏览器
int ws_response(struct ntyevent* ev)
{
	ev->wlength = sprintf(ev->wbuffer, "HTTP/1.1 101 Switching Protocols\r\n"
						"Upgrade: websocket\r\n"
						"Connection: Upgrade\r\n"
						"Sec-WebSocket-Accept: %s\r\n\r\n", ev->sec_accept);
 
	printf("response: %s\n", ev->wbuffer);
	return ev->wlength;
}
 
 
 
//recv回调
int recv_cb(int fd, int events, void* arg)
{
	struct ntyreactor* reactor = (struct ntyreactor*)arg;
	struct ntyevent* ev = ntyreactor_idx(reactor, fd);	
 
	if(ev == NULL)return -1;
 
	int len = recv(fd, ev->buffer, BUFFER_LENGTH, 0);
	nty_event_del(reactor->epfd, ev);
 
	if (len > 0) {
		
		ev->length = len;
		ev->buffer[len] = '\0';
 
		//printf("recv [%d]:%s\n", fd, ev->buffer);
 
		ws_request(ev);
 
		//将fd 设置为发送事件
		nty_event_set(ev, fd, send_cb, reactor);
		nty_event_add(reactor->epfd, EPOLLOUT, ev);
		
		
	} else if (len == 0) {  //客户端断开连接
 
		nty_event_del(reactor->epfd, ev);
		printf("recv_cb --> disconnect\n");
		close(ev->fd);
		 
	} else { //返回错误
 
		if (errno == EAGAIN && errno == EWOULDBLOCK) { //
			
		} else if (errno == ECONNRESET){
			nty_event_del(reactor->epfd, ev);
			close(ev->fd);
		}
		printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
		
	}
 
	return len;
}
 
 
 
//send回调
int send_cb(int fd, int events, void* arg)
{
	struct ntyreactor* reactor = (struct ntyreactor*)arg;
	struct ntyevent* ev = ntyreactor_idx(reactor, fd);
 
	if (ev == NULL) return -1;
 
	ws_response(ev);
 
	int len = send(fd, ev->wbuffer, ev->length, 0);
	if (len > 0) {
		printf("send[fd=%d], [%d]%s\n", fd, len, ev->wbuffer);
 
		//发送后,将fd设置为接收事件
		nty_event_del(reactor->epfd, ev);
		nty_event_set(ev, fd, recv_cb, reactor);
		nty_event_add(reactor->epfd, EPOLLIN, ev);
		
	} else { //发送失败
 
		nty_event_del(reactor->epfd, ev);
		close(ev->fd);
 
		printf("send[fd=%d] error %s\n", fd, strerror(errno));
 
	}
 
	return len;
}
 
 
//客户端接入回调
int accept_cb(int fd, int events, void* arg)
{
	struct ntyreactor *reactor = (struct ntyreactor*)arg;
	if (reactor == NULL) return -1;
 
	struct sockaddr_in client_addr;
	socklen_t len = sizeof(client_addr);
 
	int clientfd;
 
	//客户端接入
	if ((clientfd = accept(fd, (struct sockaddr*)&client_addr, &len)) == -1) {
		if (errno != EAGAIN && errno != EINTR) {
			
		}
		printf("accept: %s\n", strerror(errno));
		return -1;
	}
 
	//设置非阻塞fd
	int flag = 0;
	if ((flag = fcntl(clientfd, F_SETFL, O_NONBLOCK)) < 0) {
		printf("%s: fcntl nonblocking failed, %d\n", __func__, MAX_EPOLL_EVENTS);
		return -1;
	}
 
	struct ntyevent *event = ntyreactor_idx(reactor, clientfd);
 
	if (event == NULL) return -1;
 
	//将该fd设置为recv
	nty_event_set(event, clientfd, recv_cb, reactor);
	nty_event_add(reactor->epfd, EPOLLIN, event);
 
	printf("new connect [%s:%d], pos[%d]\n", 
		inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port), clientfd);
 
	return 0;
}
 
//创建socket监听
int init_sock(short port)
{
	int fd = socket(AF_INET, SOCK_STREAM, 0);
	fcntl(fd, F_SETFL, O_NONBLOCK);
 
	struct sockaddr_in server_addr;
	memset(&server_addr, 0, sizeof(server_addr));
	server_addr.sin_family = AF_INET;
	server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
	server_addr.sin_port = htons(port);
 
	bind(fd, (struct sockaddr*)&server_addr, sizeof(server_addr));
 
	if (listen(fd, 20) < 0) {
		printf("listen failed : %s\n", strerror(errno));
		return -1;
	}
 
	printf("listen server port : %d\n", port);
	return fd;
}
 
 
//reactor扩展大小
int ntyreactor_alloc(struct ntyreactor* reactor)
{
	if(reactor == NULL) return -1;
	if(reactor->evblks == NULL) return -1;
 
	struct eventblock* blk = reactor->evblks; //块的头结点
 
	//找尾节点
	while(blk->next != NULL){  //找到尾节点
		blk = blk->next;
	}
 
	struct ntyevent* evs = (struct ntyevent*)malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
	if (evs == NULL) {
		printf("ntyreactor_alloc ntyevent failed\n");
		return -2;
	}
	memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
 
	struct eventblock *block = malloc(sizeof(struct eventblock));
	if (block == NULL) {
		printf("ntyreactor_alloc eventblock failed\n");
		return -3;
	}
	//io fd集合连接成块
	block->events = evs;
	block->next = NULL;
 
	//指向新块
	blk->next = block;
	reactor->blkcnt ++;
 
	return 0;
}
 
//根据io fd来找fd结构体
struct ntyevent *ntyreactor_idx(struct ntyreactor *reactor, int sockfd) {
	if (reactor == NULL) return NULL;
	if (reactor->evblks == NULL) return NULL;
 
	int blkidx = sockfd / MAX_EPOLL_EVENTS; //在哪一个块
	while (blkidx >= reactor->blkcnt) {		//大小不够扩容
		ntyreactor_alloc(reactor);
	}
 
	int i = 0;
	struct eventblock *blk = reactor->evblks; //头结点块
	while (i++ != blkidx && blk != NULL) {    //找到所在的块
		blk = blk->next;
	}
 
	return &blk->events[sockfd % MAX_EPOLL_EVENTS]; //返回fd结构体
}
 
//reactor初始化
int ntyreactor_init(struct ntyreactor* reactor)
{
	if(reactor == NULL) return -1;
	memset(reactor, 0, sizeof(struct ntyreactor));
 
	reactor->epfd = epoll_create(1); 
	if (reactor->epfd <= 0) {
		printf("create epfd in %s err %s\n", __func__, strerror(errno));
		return -2;
	}
 
	//创建第一个块
	struct ntyevent* evs = (struct ntyevent*)malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
	if (evs == NULL) {
		printf("create epfd in %s err %s\n", __func__, strerror(errno));
		close(reactor->epfd);
		return -3;
	}
	memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
 
	struct eventblock *block = malloc(sizeof(struct eventblock));
	if (block == NULL) {
		free(evs);
		close(reactor->epfd);
		return -3;
	}
	block->events = evs;
	block->next = NULL;
 
	reactor->evblks = block;
	reactor->blkcnt = 1;
 
	return 0;
}
 
//销毁reactor
int ntyreactor_destory(struct ntyreactor* reactor)
{
	close(reactor->epfd);
 
	struct eventblock *blk = reactor->evblks;
	struct eventblock *blk_next;
	while (blk != NULL) {
		blk_next = blk->next;
 
		free(blk->events);
		free(blk);
		
		blk = blk_next;
	}
 
	return 0;
}
 
//初始化接收连接socket
int ntyreactor_addlistener(struct ntyreactor* reactor, int sockfd, NCALLBACK *acceptor){
	if (reactor == NULL) return -1;
	if (reactor->evblks == NULL) return -1;
 
	struct ntyevent* event = ntyreactor_idx(reactor, sockfd);
	if (event == NULL) return -1;
 
	nty_event_set(event, sockfd, acceptor, reactor);
	nty_event_add(reactor->epfd, EPOLLIN, event);
 
	return 0;
}
 
//reactor事件循环
int ntyreactor_run(struct ntyreactor* reactor)
{
	if (reactor == NULL) return -1;
	if (reactor->epfd < 0) return -1;
	if (reactor->evblks == NULL) return -1;
	
	struct epoll_event events[MAX_EPOLL_EVENTS+1];
	
	int checkpos = 0, i;
 
	while(1){
		int nready = epoll_wait(reactor->epfd, events, MAX_EPOLL_EVENTS, 1000);
		if (nready < 0) {
			printf("epoll_wait error, exit\n");
			continue;
		}
 
		for(i = 0;i < nready; i++){
			struct ntyevent* ev = (struct ntyevent*)events[i].data.ptr; //发生事件的io fd结构体
 
			if((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)){
				ev->callback(ev->fd, events[i].events, ev->arg);
			}
			if((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)){
				ev->callback(ev->fd, events[i].events, ev->arg);
			}
		
		}
 
	}
 
}
 
int main(int argc, char *argv[]) {
 
	struct ntyreactor *reactor = (struct ntyreactor*)malloc(sizeof(struct ntyreactor));
	ntyreactor_init(reactor);
 
	//起始的端口号
	unsigned short port = SERVER_PORT;
	if (argc == 2) {
		port = atoi(argv[1]);
	}
 
	int i = 0;
	int sockfds[PORT_COUNT] = {0};
 
	for (i = 0;i < PORT_COUNT;i ++) {
		sockfds[i] = init_sock(port+i);
		ntyreactor_addlistener(reactor, sockfds[i], accept_cb);
	}
 
	ntyreactor_run(reactor);
 
	ntyreactor_destory(reactor);
	
	for (i = 0;i < PORT_COUNT;i ++) {
		close(sockfds[i]);
	}
	free(reactor);
 
	return 0;
}

4.运行结果

总结:

1. websocket是全双工方式,建立连接后客户端与服务器端是完全平等的,可以互相主动请求。而HTTP长连接基于HTTP,是传统的客户端对服务器发起请求的模式。

2. HTTP长连接中,每次数据交换除了真正的数据部分外,服务器和客户端还要大量交换HTTP header,信息交换效率很低。Websocket协议通过第一个request建立了TCP连接之后,之后交换的数据都不需要发送 HTTP header就能交换数据。

点击这里复制本文地址 以上内容由文彬编程网整理呈现,请务必在转载分享时注明本文地址!如对内容有疑问,请联系我们,谢谢!
qrcode

文彬编程网 © All Rights Reserved.  蜀ICP备2024111239号-4